Compiler

Lec 03

___]

Book

Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

Compilers

Principles, Techniques, & Tools

(

i Second Edition

ge,
2,
~ Symbax .
“nRirectoy
“elation
%
-

-
RN

£

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Lexical Analysis

PART TWO

___]

RE to NFA

Start with two states; one is the start state
and the another is the final state.

Connect them by one edge labeled with the
regular expression.

(—=

RE to NFA (cont.)

@ S|T @

For the regular expression S|T,

(O
e

RE to NFA (cont.)

(OO

For the regular expression ST,

OO+

RE to NFA (cont.)

(O

For the regular expression s*,

oG ENG
e

Examples

» Convert the following RE to NFA:
"a|b

"(a | b)(a]b)

mg ¥

“(a|b)*

"a | a*b

Nondeterministic Finite
Automata

A nondeterministic finite automaton (NFA) consists
of:
> A finite set of states S.

> A set of input symbols 3, the input alphabet. We assume
that €, which stands for the empty string, is never a
member of 5 .

> A transition function that gives, for each state, and for
each symbolin > U {€} a set of next states.

> A state s, from S that is distinguished as the start state (or
initial state) .

o A set of states F, a subset of S, that is distinguished as the
accepting states (or final states) .

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a
special case of an NFA where:

> There are no moves on input “€”, and

> For each state “s” and input symbo

Ill ”

there is

exactly one edge out of “s” labeled “a”

Example

NFA

a(€|b)a*

Simulating a DFA

INPUT:

o An input string “x” terminated by an end-of-file character “eof”.

> A DFA “D” with start state “s,”, accepting states “F”, and transition
function move.

OUTPUT:
o Answer "yes" if D accepts x ;
° "no" otherwise.

METHOD:

> The function move(s, c) gives the state to which there is an edge
from state s on input c.

> The function nextChar returns the next character of the input string
X.

Simulating a DFA Algorithm

§ = 50,
¢ = nextChar();
while (¢ '= eof) {
s = move(s,c);
¢ = nextChar();

}
if (sisin F') return "yes";
else return "no";

Example

X = ab DFA
s=0,c=a 1
s=1,c=b 1
s=2,c=eof 1
Yes 3
§ = 80,

¢ = nextChar();
while (¢ '= eof) {
s = move(s,c);
¢ = nextChar();

}
if (sisin F') return "yes";
else return "no";

Simulating a NFA

INPUT:
o An input string “x” terminated by an end-of-file character “eof”.

> An NFA “N” with start state “s,“ accepting states “F”, and transition
function move.

OUTPUT:
o Answer "yes" if M accepts X ;
> "'no" otherwise.

METHOD :

> The algorithm keeps a set of current states “S”, those that are
reached from “s,“ following a path labeled by the inputs read so far.

o If “c” is the next input character, read by the function nextChar() ,
then we first compute move(S, c) and

> then close that set using E&—closure() .

Simulating a NFA Algorithm

S = e-closure(sg);

¢ = nextChar();

while (¢ = eof) {
S = e-closure(move(S, c));
¢ = nextChar();

}

if (SNF!=0)return "yes";

else return "no"';

L = L U U

[EEN
~N

Example

NFA X=ab

S={0,2},c=a
S={1,2,3},c=b
S={2, 3}, c=eof

N NN

Yes

1) S = e-closure(sp);
2) ¢ = nextChar();
3) while (¢!= eof) {

4) S = e-closure(move(S, ¢));
5) ¢ = nextChar();
6)

7) if(SNF!=0)return "yes";
8) else return "no";

NFA to DFA

DPERATIDN DESCRIPTION

e-closure(s) Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = L.ls in T €-closure(s).
move(T,a) Set of NFA states to which there is a transition on
input symbol a from some state s in T.

NFA to DFA
(Computing &- closure(T))

push all states of 7" onto stack;
initialize e-closure(T") to T
while (stack is not empty) {
pop t, the top element, off stack;
for (each state u with an edge from ¢ to u labeled €)
if (uis not in eclosure(T')) {
add u to e-closure(T);
push u onto stack;

NFA to DFA
(The subset construction)

initially, e-closure(s;) is the only state m Dstates, and it is unmarked;
while (there is an unmarked state 7' in Dstates) {
mark 1
for (each input symbol a) {
U = e-closure(move(T, a));
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran|T,a] = U;

Example

Example
Computing &- closure

0
1
2
3
4
5
6
7
8
9

{1,7} {0,1,2,4,7} {0,1,2,4,7} 0 {1,2,3,4,6,7,8}
2,4y {1,2,4} {1,2346,78} 1 {1,23,456,78}
3} - - {2} {1,2,456,7} 2 {1,2,3,46,7,8}
{6} {123,467} {1,2456,7,9 3 {1,23,4,6,7,8}
{5} - {4} {1,2,4,5,6,7,10} 4 {1,2,3,4,6,7,8}
{6} {1,2,45,6,7}
{1,7} {1,2,4,6,7}
8 - - {7}
o - 18}

{10} - 19}

{1,2,4,5,6,7}
{1,2,4,5,6,7,9}
{1,2,4,5,6,7}
{1,2,4,5,6,7,10}
{1,2,4,5,6,7}

The Structure of the
Generated Analyzer

Input buffer
lexeme
Ie.remﬂegin\ Qﬂnﬁm‘d
Automaton
simulator

Lex Lex Transition
program compiler table

Actions

Construct Scanner

To construct the
automaton:

> We begin by taking each
regular-expression pattern
in the language and
converting it to an NFA.

> We combine all the NFA's
into one by introducing a
new start state with &-
transitions to each of the
start states of the NFA's N,
for pattern P, .

Example 3.26

Note that these three patterns
present some conflicts of the type

In particular, string abb matches
both the second and third patterns,

lexeme for pattern P, , since that :
pattern is listed first in the above a { action A, for pattern p, }

Lexer program. abb { action A for pattern ps }
A . ;
Then, input strings such as aabbb... a'b { action Ag for pattern ps }

have many prefixes that match the
third pattern. The Lex rule is to take
the longest, so we continue reading
b's, until another a is met.

Conflict Resolving

1. Find the longest matching token

2. Between two tokens with the same
length use the one declared first

Fxample 3.26

ot NFA T =—(®)

Lo 0—~©)
a

Example 3.26

Combine aII_NFA’s

Example 3.26

Read input beginning and referred to it as lexemeBegin.

As it moves the pointer called forward ahead in the input,

At each point calculates the set of states.

-

The NFA simulation reaches a point on the input where there are
no next states.

5. look backwards in the sequence of sets of states, until find a set
that includes one or more accepting states.

6. If there are several accepting states in that set, pick the one
associated with the earliest pattern P, in the list from the Lex
program.

7. Move the forward pointer back to the end of the lexeme, and start
oVver.

Example 3.26

X = aaba

Starting with t-closure of the initial
state 0, whichis {0, 1, 3, 7 }.

{0,1,3,7},a->{2,4,7} —>&*->{2,4,7}
{2,4,7}, a -> {7} —>€&*-> {7}

{7}, b -> {8} —>&*-> {8}

{81 a->o

{0,1,3,7},{2,4,7}, {7}, {8}, o

Which one (2,a), or (8, aab)?

Longest (8, aab) and then start
from “@”

a’ again.

Example 3.26

» NFA to DFA
» And omit dead states
»The accepting states are a

labeled by the pattern o - -

that is identified by that a /
tate.
state . % :

» For instance, the state .
{6, 8 } has two accepting I
states, corresponding to " b b

patterns abb and a*b*.

Since the abb is listed - -~ i
first, that is the pattern

gs}sociated with state {6,

Example 3.26

X = abba

Start from state 0137

The sequence of states entered is
0137,a -> 247

247,b ->58

58, b -> 68
68,a->¢

0137, 247, 58, 68

pattern P, = abb.

Efficiency of Algorithms

»The cost of converting a regular
expression “r” to an NFA is O(]r]),
where [r[stands for the size of “r”.

»With at most [r] states and at most

2/r] edges.
> NFA to DFA : For every DFA state AUTOMATON INITIAL | PER STRING
constructed, we must construct at most NFA O(|r|) O(|r| x |z)
[r] new states, and each one takes at DFA typical case | O(|r[*) O(|z|)
most O([r] +2 [r]) time. DFA worst case | O(|r|?2/"]) O(|z|)

»The time to construct a DFA of “s”
states is thus Of(]r/[?s).

»Common case where “s” is about /r].

>Worst case where “s” is about 2/"/.

Minimizing the Number of
States of a DFA

1. Start with an initial partition IT with two groups, F' and S — F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition ITpey-

initially, let ey = II;
for (each group G of IT) {
partition (- into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;
/* at worst, a state will be in a subgroup by itself */
replace (¢ in Ilpew by the set of all subgroups formed;

}

Minimizing the Number of
States of a DFA

3. If llpew = I1, let Ilg,,; = IT and continue with step (4). Otherwise, repeat
step (2) with ITpeyw in place of II.

4. Choose one state in each group of Ilg,.; as the representative for that

group. The representatives will be the states of the minimum-state DFA
D'. The other components of D' are constructed as follows:

Example

Two classes : {0,1,2,3}, {4}

(0,a->1), (1,a->1), (2,a->1), (3,a->1)
(0,b->2), (1,b->3), (2,b->2), (3,b->4)
New classes {0,1,2}, {3}, {4}
(0,a->1), (1,a->1), (2,a->1)

(0,b->2), (1,b->3), (2,b->2)

New classes {0, 2}, {1}, {3}, {4}

(0,a->1), (2,a->1) no change
(0,b->2), (2,b->2) no change
Last classes {0, 2}, {1}, {3}, {4}

