
Compiler
Lec 03

1

Book
Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Lexical Analysis
PART TWO

4

5

RE to NFA
Start with two states; one is the start state
and the another is the final state.

Connect them by one edge labeled with the
regular expression.

6

RE to NFA (cont.)

For the regular expression S|T,

7

RE to NFA (cont.)

For the regular expression ST,

8

RE to NFA (cont.)

For the regular expression s*,

Examples

Convert the following RE to NFA:
a | b
(a | b) (a | b)
a *
(a | b)*
a | a*b

9

Nondeterministic Finite
Automata
A nondeterministic finite automaton (NFA) consists
of:
◦ A finite set of states S.

◦ A set of input symbols ∑, the input alphabet. We assume
that Ɛ, which stands for the empty string, is never a
member of ∑ .

◦ A transition function that gives, for each state, and for
each symbol in ∑ U {Ɛ} a set of next states.

◦ A state s0 from S that is distinguished as the start state (or
initial state) .

◦ A set of states F, a subset of S, that is distinguished as the
accepting states (or final states) .

10

Deterministic Finite Automata
A deterministic finite automaton (DFA) is a
special case of an NFA where:
◦ There are no moves on input “Ɛ”, and

◦ For each state “s” and input symbol “a”, there is
exactly one edge out of “s” labeled “a”.

11

Example
NFA

a(Ɛ|b)a*

DFA

12

0 1

3

a a
b

2

b b

a

a , b

Simulating a DFA
INPUT:
◦ An input string “x” terminated by an end-of-file character “eof”.

◦ A DFA “D” with start state “s0”, accepting states “F”, and transition
function move.

OUTPUT:
◦ Answer "yes" if D accepts x ;

◦ "no" otherwise.

METHOD:
◦ The function move(s, c) gives the state to which there is an edge

from state s on input c.

◦ The function nextChar returns the next character of the input string
x.

13

Simulating a DFA Algorithm

14

Example
X = ab

s =0 , c = a 1

s =1 , c = b 1

s =2 , c = eof 1

Yes 3

DFA

15

0 1

3

a a
b

2

b b

a

a , b

Simulating a NFA
INPUT:
◦ An input string “x” terminated by an end-of-file character “eof”.

◦ An NFA “N” with start state “s0“, accepting states “F”, and transition
function move.

OUTPUT:
◦ Answer "yes" if M accepts x ;

◦ "no" otherwise.

METHOD :
◦ The algorithm keeps a set of current states “S”, those that are

reached from “s0“ following a path labeled by the inputs read so far.

◦ If “c” is the next input character, read by the function nextChar() ,
then we first compute move(S, c) and

◦ then close that set using Ɛ–closure() .

16

Simulating a NFA Algorithm

17

Example
NFA X = ab

S = {0, 2}, c = a 2

S = {1, 2, 3}, c = b 3

S = {2, 3}, c = eof 2

Yes 7

18

NFA to DFA

19

NFA to DFA
(Computing Ɛ- closure(T))

20

NFA to DFA
(The subset construction)

21

Example

22

Example
Computing Ɛ- closure

state a b Ɛ Ɛ- closure

0 - - {1, 7} {0, 1, 2, 4, 7}

1 - - {2, 4} {1, 2, 4}

2 {3} - - {2}

3 - - {6} {1,2,3,4,6,7}

4 - {5} - {4}

5 - - {6} {1,2,4,5,6,7}

6 - - {1, 7} {1,2,4,6,7}

7 {8} - - {7}

8 - {9} - {8}

9 - {10} - {9}

10 - - - {10}

23

NFA Set a b

{0,1,2,4,7} 0 {1,2,3,4,6,7,8} {1,2,4,5,6,7}

{1,2,3,4,6,7,8} 1 {1,2,3,4,6,7,8} {1,2,4,5,6,7,9}

{1,2,4,5,6,7} 2 {1,2,3,4,6,7,8} {1,2,4,5,6,7}

{1,2,4,5,6,7,9} 3 {1,2,3,4,6,7,8} {1,2,4,5,6,7,10}

{1,2,4,5,6,7,10} 4 {1,2,3,4,6,7,8} {1,2,4,5,6,7}

The Structure of the
Generated Analyzer

24

Construct Scanner
To construct the
automaton:
◦ We begin by taking each

regular-expression pattern
in the language and
converting it to an NFA.

◦ We combine all the NFA's
into one by introducing a
new start state with Ɛ-
transitions to each of the
start states of the NFA's Ni
for pattern Pi .

25

Example 3.26
Note that these three patterns
present some conflicts of the type

In particular, string abb matches
both the second and third patterns,

lexeme for pattern P2 , since that
pattern is listed first in the above
Lexer program.

Then, input strings such as aabbb…

have many prefixes that match the
third pattern. The Lex rule is to take
the longest, so we continue reading
b's , until another a is met.

26

Conflict Resolving
1. Find the longest matching token

2. Between two tokens with the same
length use the one declared first

27

Example 3.26
For each pattern
constructs NFA

28

Example 3.26
Combine all NFA’s

29

Example 3.26
1. Read input beginning and referred to it as lexemeBegin.

2. As it moves the pointer called forward ahead in the input ,

3. At each point calculates the set of states.

4. The NFA simulation reaches a point on the input where there are
no next states.

5. look backwards in the sequence of sets of states, until find a set
that includes one or more accepting states.

6. If there are several accepting states in that set , pick the one
associated with the earliest pattern Pi in the list from the Lex
program.

7. Move the forward pointer back to the end of the lexeme, and start
over.

30

Example 3.26
X = aaba

Starting with t-closure of the initial
state 0, which is {0, 1, 3, 7 }.

{0,1,3,7}, a -> {2,4,7} –>Ɛ*-> {2,4,7}

{2,4,7}, a -> {7} –>Ɛ*-> {7}

{7}, b -> {8} –>Ɛ*-> {8}

{8}, a -> ø

{0,1,3,7}, {2,4,7}, {7}, {8}, ø

Which one (2,a), or (8, aab)?

Longest (8, aab) and then start
from “a” again.

31

Example 3.26
NFA to DFA

And omit dead states

The accepting states are
labeled by the pattern
that is identified by that
state.

For instance, the state
{6, 8 } has two accepting
states, corresponding to
patterns abb and a*b+.
Since the abb is listed
first, that is the pattern
associated with state {6,
8 }.

32

Example 3.26
X = abba

Start from state 0137

The sequence of states entered is
0137,a -> 247

247, b -> 58

58, b -> 68

68 , a -> ø

0137, 247, 58, 68

pattern P2 = abb.

33

Efficiency of Algorithms
The cost of converting a regular
expression “r” to an NFA is O(|r|),
where |r| stands for the size of “r”.

With at most |r| states and at most
2|r| edges.

NFA to DFA : For every DFA state
constructed, we must construct at most
|r| new states, and each one takes at
most O(|r| + 2 |r|) time.

The time to construct a DFA of “s”
states is thus O((|r|2s).

Common case where “s” is about |r|.

Worst case where “s” is about 2|r|.

34

Minimizing the Number of
States of a DFA

35

Minimizing the Number of
States of a DFA

36

Example
Two classes : {0,1,2,3}, {4}

(0,a->1), (1,a->1), (2,a->1), (3,a->1)

(0,b->2), (1,b->3), (2,b->2), (3,b->4)

New classes {0,1,2}, {3}, {4}

(0,a->1), (1,a->1), (2,a->1)

(0,b->2), (1,b->3), (2,b->2)

New classes {0, 2}, {1}, {3}, {4}

(0,a->1), (2,a->1) no change

(0,b->2), (2,b->2) no change

Last classes {0, 2}, {1}, {3}, {4}

37

?

38

